Abstract

Syngas production from biomass gasification is a potentially sustainable and alternative means of conventional fuels. The current challenges for biomass gasification process are biomass storage and tar contamination in syngas. Co-gasification of two biomass and use of mineral catalysts as tar reformer in downdraft gasifier is addressed the issues. The optimized and parametric study of key parameters such as temperature, biomass blending ratio, and catalyst loading were made using Response Surface Methodology (RSM) and Artificial Neural Network (ANN) on tar reduction and syngas. The maximum H2 was produced when Portland cement used as catalyst at optimum conditions, temperature of 900 °C, catalyst-loading of 30%, and biomass blending-ratio of W52:OPF48. Higher CO was yielded from dolomite catalyst and lowest tar content obtained from limestone catalyst. Both RSM and ANN are satisfactory to validate and predict the response for each type of catalytic co-gasification of two biomass for clean syngas production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.