Abstract

Distributed networked control systems (D-NCS) are vulnerable to various network attacks when the network is not secured; thus, D-NCS must be well protected with security mechanisms (e.g., cryptography), which may adversely affect the dynamic performance of the D-NCS because of limited system resources. This paper addresses the tradeoff between D-NCS security and its real-time performance and uses the Intelligent Space (iSpace) for illustration. A tradeoff model for a system's dynamic performance and its security is presented. This model can be used to allocate system resources to provide sufficient protection and to satisfy the D-NCS's real-time dynamic performance requirements simultaneously. Then, the paper proposes a paradigm of the performance-security tradeoff optimization based on the coevolutionary genetic algorithm (CGA) for D-NCS. A Simulink-based test-bed is implemented to illustrate the effectiveness of this paradigm. The results of the simulation show that the CGA can efficiently find the optimal values in a performance-security tradeoff model for D-NCS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.