Abstract

A major challenge in composite manufacturing is to connect several fiber composite or hybrid profiles to a closed structure, since the conventional, metallic joining methods are often not applicable. An approach for joining such profiles is represented by the filament winding process, where the profiles are wrapped with carbon fibers. In order to achieve a flexibility in the joining process and a high reproducibility in deposition, a model for describing the winding paths was derived. An analytical model of the geometry of a T-joint is introduced in terms of a mathematical parametrization of areas. For the modeling of the winding paths itself, a differential-geometric approach combined with an algorithm to calculate geodesic and non-geodesic curves was used taking into account the relevant influencing parameters during winding. This model makes it possible to map different winding patterns of the profiles, which should serve as a starting basis for a kinematic simulation of the movements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.