Abstract

The present work addresses the issue on power consumption in finish hard turning of die steel under nanofluid-assisted minimum quantity lubrication condition. This study also aims to assess the propitious role of minimum quantity lubrication using graphene nanoparticle-enriched radiator green coolant-based nano-cutting fluid for machinability improvement of hardened steel. The hard turning trials are performed based on design of experiments by considering the geometrical parameters (insert’s nose radius) and machining parameters (cutting speed, axial feed, depth of cut). Combined approach of central composite design—analysis of variance, desirability function analysis, and response surface methodology—have been subsequently employed for analysis, predictive modeling, and optimization of machining power consumption. With a motivational philosophy of “Go Green-Think Green-Act Green”, the work also deals with energy-saving carbon footprint analysis, economic analysis, and sustainability assessment under environmental-friendly nanofluid-assisted minimum quantity lubrication condition. Results showed that machining with nanofluid-minimum quantity lubrication provided an effective cooling-lubrication strategy, safer and cleaner production, environmental friendliness, and assisted to improve sustainability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.