Abstract

Selective Laser Sintering (SLS) is an important branch of additive manufacturing (3D printing) technologies. The SLS machines are processing powders so that they are selectively sintered by a CO2 or Nd:YAG laser beam. The SLS process was initially developed to produce polymer-based components. Then, SLS had a breakthrough toward the producing of structurally perfect parts directly from metal powders. The high intensity of the laser beam makes it possible to rapidly heat a small region, inducing a disequilibrium of the temperature distribution and large temperature gradients. The numerical simulation is important for the process of laser sintering since it tackles the comprehension of such local heat accumulation. This, in turn, drives the choice of the process parameters in accordance with the processed material characteristics and with the quality aimed for the final sintered product. In the present paper, we use our three-dimensional transient finite element model to study the SLS process applied to amorphous polycarbonate and titanium powders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.