Abstract

A comprehensive model of an ultrasonic nondestructive evaluation (NDE) flaw measurement system is developed that combines models for the electrical components (pulser/receiver, cabling), electromechanical components [transducer(s)], and the acoustic/elastic processes present in the materials being inspected, including the scattering of ultrasonic waves from a flaw. This model is called the electroacoustic measurement (EAM) model. Here, in Part I, the underlying modeling foundations of the EAM model are described in detail and the use of the EAM model is demonstrated in a transducer design study. This EAM model provides a new, powerful tool for analyzing virtually any element in the measurement process. In Part II it will be shown that this power can be extended to characterizing typical commercial measurement systems through the use of models and purely electrical measurements of the system components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.