Abstract

We develop a novel large-scale Network Autoregressive model with balance Constraint (NAC) to predict hour-ahead gas flows in the gas transmission network, where the total in- and out-flows of the network are balanced over time. By integrating recent advances in optimization and statistical modeling, the NAC model can provide an accurate hour-ahead forecast of the gas flow at all of the distribution points in the network. By detecting the influential nodes of the dynamic network, taking into account that demand and supply have to be balanced, the forecast can be used to compute an optimized schedule and resource allocation. We demonstrate an application of our model in forecasting hour-ahead gas in- and out-flows at 128 nodes in the German high-pressure natural gas transmission network over a time frame of 22 months. It dramatically improves the out-of-sample forecast accuracy with the average root mean squared error reduced from 1.116 to 0.725 (35% change) and the mean squared forecast error reduced from 36.389 to 11.914 (67% change). The NAC model successfully also improves the demand and supply balance, with the average deviation dropping from 7.590 to 2.391. Moreover, we identify three permanently influential nodes in the gas transmission network, and we also capture the dynamic changes in the network with 42 influential nodes on average and 17 influential nodes in summer months.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.