Abstract

We have investigated the use of multilayer thin film structures for channeling and concentrating soft gamma rays with energies greater than 100 keV, beyond the reach of current grazing-incidence hard X-ray mirrors. A suitable arrangement of bent multilayer structures of alternating low and high-density materials will channel soft gamma-ray photons via total external reflection and then concentrate the incident radiation to a point. We describe the properties of W/Si multilayer structure produced by magnetron sputter technique with the required thicknesses and smoothness. We also have developed a flexible set of computer modeling tools to compute the optical properties of multilayer structures, predict the channeling efficiency for a given multilayer configuration and aid in the optimization of potential gamma-ray concentrator-based telescope designs. This modeling includes multilayer optical properties calculated by the IMD software, IDL gamma ray tracing code and a focal plane detector simulation by MEGAlib. This technology offers the potential for soft gamma-ray telescopes with focal lengths of less than 10 m, removing the need of formation flying spacecraft and providing greatly increased sensitivity for modest cost and complexity and opening the field up to balloon-borne instruments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.