Abstract
Multistable laminates have been widely analyzed in the recent past for their potential in morphing applications. However, all the analytical models developed up until now have taken into account only the free-free boundary condition. In this work two objectives are met: (a) an analytical model is developed, which extends the previously available models in literature to account for the cantilever boundary condition for a special class of hybrid bistable symmetric laminates (HBSL); (b) the previously proposed HBSL is modified by replacing the aluminum layers with bi-direction glass-epoxy prepregs in the layup. It is observed that the modified layup has a curvature similar to the previously proposed HBSL while maintaining bistability. The analytical model developed here successfully captures the equilibrium shapes and the snap-through behavior for this special class of laminates which is validated against the results obtained using ABAQUS® and experiments. The developed model is then subsequently used to study the design space and bistability characteristics of the HBSL and the proposed modified layup (m-HBSL) in the cantilever boundary condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.