Abstract

A rate-dependent hysteresis model for Giant Magnetostrictive Actuator (GMA) is proposed based on Hammerstein model structure. The Generalized Prandtl-Ishlinskii (GPI) model is used to represent nonlinear block in Hammerstein model. The validity of model is examined by comparsion between simulation results and experimental data. Based on the proposed model, a PID feedback controller combined with an inverse compensation in the feedforward loop is used for tracking control. Experimental results show that the control strategy is effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.