Abstract

Alzheimer’s disease (AD), the most common type of dementia, not only imposes a huge financial burden on the health care system, but also a psychological and emotional burden on patients and their families. There is thus an urgent need to infer trajectories of cognitive performance over time and identify biomarkers predictive of the progression. In this article, we propose the multi-task learning with fused Laplacian sparse group lasso model, which can identify biomarkers closely related to cognitive measures due to its sparsity-inducing property, and model the disease progression with a general weighted (undirected) dependency graphs among the tasks. An efficient alternative directions method of multipliers based optimization algorithm is derived to solve the proposed non-smooth objective formulation. The effectiveness of the proposed model is demonstrated by its superior prediction performance over multiple state-of-the-art methods and accurate identification of compact sets of cognition-relevant imaging biomarkers that are consistent with prior medical studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.