Abstract
The single-shot x-ray Talbot-Lau interferometer-based differential phase contrast (DPC) imaging is able to accelerate time-consuming data acquisition; however, the extracted phase image suffers from severe image artifacts. Here, we propose to estimate the DPC image via a deep convolutional neural network (CNN) incorporated with the physical imaging model. Instead of training the CNN with thousands of labeled data beforehand, both phantom and biological specimen validation experiments show that high-quality DPC images can be automatically generated from only one single-shot projection image with a certain periodic moiré pattern. This work provides a new, to the best of our knowledge, paradigm for single-shot x-ray DPC imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.