Abstract
This study proposes a model-based robust fault detection and isolation (RFDI) method with hybrid structure. Robust detection and isolation of the realistic faults of an industrial gas turbine in steady-state conditions is mainly considered. For residual generation, a bank of time-delay multilayer perceptron (MLP) models is used, and in fault detection step, a passive approach based on model error modelling is employed to achieve threshold adaptation. To do so, local linear neuro-fuzzy (LLNF) modelling is utilised for constructing error-model to generate uncertainty interval upon the system output in order to make decision whether a fault occurred or not. This model is trained using local linear model tree (LOLIMOT) which is a progressive tree-construction algorithm. Simple thresholding is also used along with adaptive thresholding in fault detection phase for comparative purposes. Besides, another MLP neural network is utilised to isolate the faults. In order to show the effectiveness of proposed RFDI method, it was tested on a single-shaft industrial gas turbine prototype model and has been evaluated based on the gas turbine data. A brief comparative study with the related works done on this gas turbine benchmark is also provided to show the pros and cons of the presented RFDI method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.