Abstract

Current methods to quantify T-cell clonal expansion only account for variance due to random sampling from a highly diverse repertoire space. We propose a beta-binomial model to incorporate time-dependent variance into the assessment of differentially abundant T-cell clones, identified by unique T Cell Receptor (TCR) β-chain rearrangements, and show that this model improves specificity for detecting clinically relevant clonal expansion. Using blood samples from ten healthy donors, we modeled the variance of T-cell clones within each subject over time and calibrated the dispersion parameters of the beta distribution to fit this variance. As a validation, we compared pre- versus post-treatment blood samples from urothelial cancer patients treated with atezolizumab, where clonal expansion (quantified by the earlier binomial model) was previously reported to correlate with benefit. The beta-binomial model significantly reduced the false-positive rate for detecting differentially abundant clones over time compared to the earlier binomial method. In the urothelial cancer cohort, the beta-binomial model enriched for tumor infiltrating lymphocytes among the clones detected as expanding in the peripheral blood in response to therapy compared to the binomial model and improved the overall correlation with clinical benefit. Incorporating time-dependent variance into the statistical framework for measuring differentially abundant T-cell clones improves the model's specificity for T-cells that correlate more strongly with the disease and treatment setting of-interest. Reducing background-level clonal expansion, therefore, improves the quality of clonal expansion as a biomarker for assessing the T cell immune response and correlations with clinical measures.

Highlights

  • High-throughput next-generation sequencing of the T cell receptor (TCR) repertoire, i.e., immunosequencing, enables precise molecular identification and tracking of tens to hundreds of thousands of T-cell clones in a single subject [1]

  • We found that the number of T-cell clones detected as expanded increases as the time interval between Sample A and B increases

  • This time-dependence highlights the importance of establishing a prior on typical biological variance within the T-cell repertoire, especially over weekly and monthly time intervals commonly used for collecting

Read more

Summary

Introduction

High-throughput next-generation sequencing of the T cell receptor (TCR) repertoire, i.e., immunosequencing, enables precise molecular identification and tracking of tens to hundreds of thousands of T-cell clones in a single subject [1]. A key component of the adaptive immune. Improved specificity for clinically-relevant T cells analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.