Abstract

A series of model tests were conducted to investigate the performance of geosynthetic-reinforced soil (GRS) walls with marginal backfill subjected to rainfall infiltration. The effectiveness of improvement measures—such as decreasing reinforcement spacing and increasing sand cushion thickness—to prevent the GRS wall failure due to heavy rainfall was evaluated. The distribution and variation of the volumetric water content, porewater pressure, wall deformation, and reinforcement tensile strain were monitored during the test. The advancement of the wetting front and the drainage function of sand cushions were visually observed using the fluorescent dyeing technique. For the baseline case, the wall began to deform as rainfall proceeded, causing the potential failure surface to gradually move backward. When the potential failure surface moved beyond the reinforced zone, the pullout of the topmost reinforcement layers occurred, resulting in the collapse of the GRS wall in a compound failure mode. Decreases in reinforcement spacing and increases in sand cushion thickness effectively reduced wall deformation and enhanced wall stability. The placing of sand cushions between the reinforcement layers can also delay water infiltration and reduce the accumulation of porewater pressure inside the wall. Suggestions for designing rain-resistant GRS walls are also proposed based on the findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.