Abstract
ABSTRACTThe present studies of the atomic Ag adsorbate on the substrate TiO2(110) explore the importance of dispersion (or van der Waals) energies for determining the structure of the adsorbed Ag atom, using density functional theory (DFT) supplemented by a dispersion energy treatment, within the PBE-D3 treatment. It is also of interest to explore electronic excitation by light absorption. Electronic density of states (EDOS) are obtained without and with Ag adsorbed on the TiO2(110), to find the extent of change on the density of valence, conduction and intraband states. This is done using the hybrid HSE06 functional, which is known to provide good values for the energy band gap of the substrate. A computationally efficient PBE + BG procedure for these structures, which corrects the PBE band gap, is implemented to generate accurate EDOSs and light absorption intensities versus photon energies. This is followed by a reduced density matrix treatment of the dissipative dynamics of light absorption, generating state-to-state oscillator strengths and photoabsorbances for the pure and nanostructured TiO2(110) surfaces. Adsorption of Ag leads to a noticeable increase in light absorption at visible wavelengths, and very large increases in the UV region of the spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.