Abstract

The analysis of the sequence of Helicobacter pylori UreD(H), an accessory protein involved in the activation of urease through the assembly of the Ni(2+)-containing active site, revealed the presence of two domains. The structure of these domains was calculated using threading and modeling algorithms. A search for putative binding sites on the protein surface was carried out using dedicated algorithms sensitive to either sequence conservation or structural similarity based on geometry and physicochemical properties. The results suggest that UreD(H) acts as a multifunctional molecular recognition platform facilitating the interaction between apo-urease and the ancillary proteins UreG, UreF, and UreE, responsible for nickel trafficking and delivering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.