Abstract

In this paper, the recently introduced model predictive pulse pattern control (MP3C) strategy is adapted to the ACS 2000 medium-voltage (MV) drive of ABB. The drive system consists of a five-level active neutral-point-clamped (ANPC-5L) rectifier, an inverter, and an induction machine (IM). The inverter is fed with offline-computed optimized pulse patterns (OPPs) that produce minimum harmonic distortion in the stator windings of the ac machine. An optimal stator flux trajectory is calculated from these OPPs, and a trajectory controller tracks it in real time. In the proposed approach, trajectory tracking is based on model predictive control: a constrained optimal control problem is formulated and solved in real time in a computationally efficient manner. An event-based prediction horizon is employed in order to ensure fast tracking of the stator flux trajectory. The advantages of the proposed method are optimal steady-state behavior in terms of harmonic distortion and fast torque response. The method was tested on an MV ANPC-5L inverter coupled to a general-purpose 1.21-MW IM. Experimental results were obtained from this industrial setup, and they are presented in this paper to demonstrate the high performance of MP3C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.