Abstract
In this work, we present a model order reduction (MOR) technique for hyperbolic conservation laws with applications in uncertainty quantification (UQ). The problem consists of a parametrized time dependent hyperbolic system of equations, where the parameters affect the initial conditions and the fluxes in a non- linear way. The procedure utilized to reduce the order is a combination of a Greedy algorithm in the parameter space, a proper orthogonal decomposition (POD) in time and empirical interpolation method (EIM) to deal with non-linearities (Drohmann, 2012). We provide under some hypothesis an error bound for the reduced solution with respect to the high order one. The algorithm shows small errors and savings of the computational time up to 90% in the UQ simulations, which are performed to validate the algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.