Abstract

Continuum manipulators offer a means for robot manipulation in a constrained environment, where the manipulator body can safely interact with, comply with, and navigate around obstacles. However, obstacle interactions impose constraints that conform the robot body into arbitrary shapes regardless of actuator positions. Generally, these effects cannot be wholly sensed on a continuum manipulator and, therefore, render model-based controllers incorrect, leading to artificial singularities and unstable behavior. We present a task-space closed-loop controller for continuum manipulators that does not rely on a model and can be used in constrained environments. Using an optimal control strategy on a tendon-driven robot, we demonstrate this method, which we term model-less control, which allows the manipulator to interact with several constrained environments in a stable manner. To the best of our knowledge, this is the first work in controlling continuum manipulators without using a model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.