Abstract
A lot of the physical and the numerical modeling of Czochralski crystal growth is done on the generic Rayleigh-Benard system. To better approximate the conditions in a Czochralski puller, the influences of a rounded crucible bottom, deviations of the thermal boundary conditions from the generic case, crucible and/or crystal rotation, and the influence of magnetic fields are often studied separately. The present contribution reviews some of these topics while concentrating on studies of the flow and related temperature fluctuations in systems where a rotating magnetic field (RMF) was applied. The three-dimensional convective patterns and the resulting temperature fluctuations will be discussed both for the mere buoyant case and for the application of an RMF. It is shown that a system between a Rayleigh-Benard and a more realistic configuration, which is still cylindrical but whose surface is partially covered by a crystal model, behaves much the same as a Rayleigh-Benard system. An RMF can be used to damp the temperature fluctuations. Secondly, a more Czochralski-like system is examined. It turns out that the RMF does not provide the desired damping of the temperature fluctutions in the parameter range considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.