Abstract

In this letter, we show that both Debye poles and Lorentz pole pairs are special cases of complex-conjugate pole-residue pairs, and the general form of such pairs is in fact far more efficient than the commonly used Debye poles and Lorentz pole pairs for modeling real dispersive media with the finite-difference time-domain method. We first derive an alternative formulation of the auxiliary differential equation method for arbitrary dispersive media based on general complex-conjugate pole-residue pairs. We then numerically demonstrate the efficiency of using these pairs in modeling dispersive media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.