Abstract
To protect public-use microdata, one approach is not to allow users access to the microdata. Instead, users submit analyses to a remote computer that reports back basic output from the fitted model, such as coefficients and standard errors. To be most useful, this remote server also should provide some way for users to check the fit of their models, without disclosing actual data values. This paper discusses regression diagnostics for remote servers. The proposal is to release synthetic diagnostics—i.e. simulated values of residuals and dependent and independent variables–constructed to mimic the relationships among the real-data residuals and independent variables. Using simulations, it is shown that the proposed synthetic diagnostics can reveal model inadequacies without substantial increase in the risk of disclosures. This approach also can be used to develop remote server diagnostics for generalized linear models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.