Abstract

A model for the relation between the acoustic emission signal generation and tool wear was established for cutting processes in micromilling by considering the acoustic emission (AE) generation and propagation mechanisms. In addition, the effect of tool wear on the AE signal generation in frequency and amplitude was studied. In the model development, the finite element analysis was first used to calculate the shear strain rate distribution on the shear plane based on the orthogonal cutting assumption. Conversely, the contact stress distribution of workpiece on the flank wear face was established based on the Waldorf model. Following the finite element method, the dislocation density in materials was calculated based on Orowan’s law with the calculated stress rate. Finally, the AE signal detected by the sensor was calculated by considering the Gaussian probability density function for the distribution of AE source on the shear plane and the one-dimension wave equation for AE signal propagation. Based on the developed model, the effect of tool wear on the AE signal generation was investigated and compared to the experimental results. The results obtained from these investigations indicate that the proposed model can be used to predict the effect of tool wear on the AE signal generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.