Abstract
We apply here the previously developed mass transfer model (Part 1) for drying of aerogel monoliths to the supercritical drying of particles in a packed bed. We analyzed the influence of the operating conditions, flow rate, particle and autoclave size on the drying time and consumption of carbon dioxide. Although the model requires certain improvement to quantitatively predict the experimental drying kinetics, it captures all features of the supercritical drying: (i) transition of the limiting mass transfer step between diffusion in the gel and convection in the bulk fluid; (ii) role of CO2 density as natural variable for analysis of the CO2 consumption; (iii) influence of the autoclave dimensions on the drying process. We suggest a unified approach towards the analysis of drying process based on a dimensionless number. Practical recommendations on the rational selection of process parameters to achieve appropriate combinations of drying time and CO2 consumption are formulated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.