Abstract

Some simple models of Arctic sea ice show bifurcations associated with the loss of sea ice under increased surface radiative forcing (Eisenman and Wettlaufer 2009). However, experiments using GCMs typically show a smooth loss of sea ice under increasing CO2. This mismatch adds to uncertainty on the existence of tipping point behaviour in the Arctic and the processes that stabilise or destabilise it from this behaviour.Simple models exhibiting tipping points typically omit many features of the Arctic climate system. Their bifurcations usually arise from the ice-albedo feedback. The purpose of my work is to use a bottom-up hierarchical approach to investigate how additional features of Arctic climate not included in simple models affect the existence of bifurcations in the system.I started with a base ice model (Eisenman and Wettlaufer 2009) and investigate the role of local ice-atmosphere feedbacks using a coupled atmospheric column model. This allowed me to analyse the impact of the following on the possible states for the model to exist in:Changes to the atmospheric temperature profile – particularly the transition from a stable atmosphere with a strong temperature inversion to a less stable atmosphere as the Arctic warms. Explicitly resolved changes in surface heat fluxes and downwelling longwave radiation. Changes in low level Arctic clouds – particularly as the atmospheric structure changes. I also explored the sensitivity of the model to changes and variation in atmospheric heat transport.I will present results of this work and demonstrate how local atmospheric feedbacks affect the stability of tipping points in Arctic sea ice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.