Abstract
In this paper we introduce model-based search as a unifying framework accommodating some recently proposed metaheuristics for combinatorial optimization such as ant colony optimization, stochastic gradient ascent, cross-entropy and estimation of distribution methods. We discuss similarities as well as distinctive features of each method and we propose some extensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.