Abstract

We introduce a model-based approach for the non-invasive estimation of patient specific, left ventricular PV loops. A lumped parameter circulation model is used, composed of the pulmonary venous circulation, left atrium, left ventricle and the systemic circulation. A fully automated parameter estimation framework is introduced for model personalization, composed of two sequential steps: first, a series of parameters are computed directly, and, next, a fully automatic optimization-based calibration method is employed to iteratively estimate the values of the remaining parameters. The proposed methodology is first evaluated for three healthy volunteers: a perfect agreement is obtained between the computed quantities and the clinical measurements. Additionally, for an initial validation of the methodology, we computed the PV loop for a patient with mild aortic valve regurgitation and compared the results against the invasively determined quantities: there is a close agreement between the time-varying LV and aortic pressures, time-varying LV volumes, and PV loops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.