Abstract
In this work, we present an algorithm for face 3-D motion estimation in videoconference sequences. The algorithm is able to estimate both the position of the face as an object in 3-D space (global motion) and the movements of portions of the face, like the mouth or the eyebrows ( local motion). The algorithm uses a modified version of the standard 3-D face model CANDIDE. We present various techniques to increase robustness of the global motion estimation which is based on feature tracking and an extended Kalman filter. Global motion estimation is used as a starting point for local motion detection in the mouth and eyebrow areas. To this purpose, synthetic images of these areas (templates) are generated with texture mapping techniques, and then compared to the corresponding regions in the current frame. A set of parameters, called action unit vectors (AUVs) influences the shape of the synthetic mouth and eyebrows. The optimal AUV values are determined via a gradient-based minimization procedure of the error energy between the templates and the actual face areas. The proposed scheme is robust and was tested with success on sequences of many hundreds of frames.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.