Abstract

This paper presents an overview of model-based (Nonlinear Model Predictive Control, Iterative Learning Control and Iterative Optimization) and model-free (Genetic-based Machine Learning and Reinforcement Learning) learning strategies for the control of wet-clutches. The benefits and drawbacks of the different methodologies are discussed, and illustrated by an experimental validation on a test bench containing wet-clutches. In general, all strategies yield a good engagement quality once they converge. The model-based strategies seems most suited for an online application, because they are inherently more robust and require a shorter convergence time. The model-free strategies meanwhile seem most suited to offline calibration procedures for complex systems where heuristic tuning rules no longer suffice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.