Abstract

Orientational ordering within nanoscale (70–8 nm) thickness fluorinated ionomer films on Si substrates was investigated through the use of attenuated total reflection Fourier transform infrared (ATR–FTIR) spectroscopy in conjunction with electromagnetic field calculations. A spectral model was developed for Nafion thin films across the 1400–950 cm–1 region from frequency-dependent, isotropic optical constants derived from Kramers–Kronig analysis of ionomer transmission infrared spectra. The model considered infrared light propagation within the parallel boundary regions between the Ge ATR crystal, the ionomer film, and the Si substrate supporting the film. The calculations reproduced overall polymer thickness-dependent changes in peak frequencies and band shapes observed in experimental spectra recorded with p- and s-polarized light. General trends were traceable to effects of anomalous dispersion and electric field enhancement within the nanoscale gap separating the Ge and Si phases. However, optical eff...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.