Abstract

In this work, a Model Based Adaptive Direct Power Control (MB-ADPC) with constant switching frequency for Three-Phase Three-Level Neutral Point Clamped (3L-NPC) converters is proposed. The rectifier and inverter operation mode are used to illustrate the flexibility of the proposed MB-ADPC controller. The control design process is based on the continuous averaged model of the system. Depending on the operation mode different control objectives have to be guaranteed. The proposed controller ensures the voltage regulation of the dc-link capacitors for the rectifier operation mode and to achieve voltage balance in the dc-link capacitors and the active and reactive power tracking for the rectifier and inverter operation modes. In addition, adaptive techniques are used to avoid system parameters uncertainties as smoothing inductors and grid frequency values. This work shows that the application of advanced control strategies based on the system model allows enhancing the performance of the overall system. The details of the controllers design process and the experimental results using a 50 kVA Three-Phase Three-Level NPC prototype are presented in this paper validating the proposed controllers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.