Abstract

In this paper, a hybrid data- and model-based autonomous environmental adaptation framework is presented which allows autonomous underwater vehicles (AUVs) with acoustic sensors to follow a path which optimizes their ability to maintain connectivity with an acoustic contact for optimal sensing or communication. The adaptation framework is implemented within the behavior-based mission-oriented operating suite-interval programming (MOOS-IvP) marine autonomy architecture and uses a new embedded high-fidelity acoustic modeling infrastructure, the generic robotic acoustic model (GRAM), to provide real-time estimates of the acoustic environment under changing environmental and situational scenarios. A set of behaviors that combine adaptation to the current acoustic environment with strategies that extend the decision horizon beyond that of typical behavior-based systems have been developed, implemented, and demonstrated in a series of field experiments and virtual experiments in a MOOS-IvP simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.