Abstract

ABSTRACTWe study the optimal discretization error of stochastic integrals driven by a multidimensional continuous Brownian semimartingale. In the previous works a pathwise lower bound for the renormalized quadratic variation of the error was provided together with an asymptotically optimal discretization strategy, i.e. for which the lower bound is attained. However the construction of the optimal strategy involved the knowledge about the diffusion coefficient of the semimartingaleunder study. In this work we provide a model-adaptive asymptotically optimal discretization strategy that does not require any prior knowledge about the model. We prove the optimality for quite general class of discretization strategies based on kernel techniques for adaptive estimation and previously obtained optimal strategies that use random ellipsoid hitting times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.