Abstract

Transesophageal echocardiography (TEE) uses the esophagus as an imaging window to the heart. This enables cardiac imaging without interference from the ribs or lungs and allows for higher frequency ultrasound to be used compared with transthoracic echocardiography (TTE). TEE facilitates the successful imaging of obese or elderly patients, where TTE may be unable to produce images of satisfactory quality. Recently, three-dimensional (3-D) TEE has been introduced, which greatly improves the image quality and diagnostic value of TEE by adding an extra dimension. Further improvement could be achieved by optimizing 3-D TEE for harmonic imaging. This article describes the optimal geometry and element configuration for a matrix probe for 3-D second harmonic TEE. The array concept features separated transmit and receive subarrays. The element geometry was studied using finite element modeling and a transmit subarray prototype was examined both acoustically and with laser interferometry. The transmit subarray is suitable for its role, with a 3 MHz resonance frequency, a 40%–50% −3 dB bandwidth and crosstalk levels <−27 dB. The proposed concept for the receive subarray has a 5.6 MHz center frequency and a 50% −3 dB bandwidth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.