Abstract

In this paper, we experimentally analyze the modal dynamics of quantum-well semiconductor lasers. Modal switching is the dominant feature for semiconductor lasers that exhibit two or several active longitudinal modes in their time-averaged optical spectrum. In quantum-well lasers, these dynamics involve a periodic switching among several longitudinal modes, which follows a well-determined sequence from the bluest to the reddest mode in the optical spectrum. This feature is radically different from the well-known noise-driven mode-hopping occurring in bulk lasers which involves only two main modes. We analyze the differences in modal dynamics for these two kinds of laser by comparing the modal switching statistics and by studying the effects of noise and modulation in the pumping current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.