Abstract

Prestressed stayed columns are an innovative type of structural system where the compressive load-carrying capacity can be enhanced through prestressed external cable stays. A nonlinear analytical model for prestressed stayed columns with multiple crossarm systems along the column length, based on the Rayleigh–Ritz method, is presented that captures modal interactions for perfect geometries explicitly for the first time. It is demonstrated that the theoretical compressive strength enhancements under certain configurations can only be obtained at the expense of triggering a sequence of destabilizing bifurcations. This can give rise to dangerously unstable interactive post-buckling behaviour including so-called ‘mode jumping’ and ‘snaking’ phenomena. Parametric spaces where the system is most susceptible to the modal interactions are identified and it is for those configurations that the system is likely to be highly sensitive to initial imperfections. The model is validated using a nonlinear finite element model formulated within the commercial code ABAQUS and excellent comparisons are obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.