Abstract

A two-dimensional monolithic InGaN-based core–shell nanorod array was excited under a varying temperature. We observed an abrupt dominant mode hopping from 3.29 to 3.41 eV in the collective lasing as the temperature decreased from T = 240 to 225 K. Photoluminescence under a near-threshold pumping density revealed the splitting of spontaneous emission between the core and the shell with a decreasing temperature. The bandgap evolution of GaN and InGaN showed opposite trends due to the interaction of temperature effects and bandgap renormalization effects. Theoretical simulation revealed the differences of gain spectra evolution between room temperature and low temperature due to the difference in the carrier dynamics. In the optically coupled nanorod array, the dominant lasing mode was not only determined by its structure, but also strongly influenced by external operating conditions. Rather than singular microcavity lasers, the coupled nanorod array demonstrated a broader parameter space for on-chip wavele...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.