Abstract

Molecular fluids show rich and complicated dynamics close to the glass transition. Some of these observations are related to the fact that translational and orientational degrees of freedom couple in nontrivial ways. A model system which can serve as a paradigm to understand these couplings is a system of hard ellipsoids of revolution. To test this we compare at the ideal glass transition the static molecular correlators of a linear A-B Lennard-Jones molecule obtained from a molecular dynamics simulation with a selected fluid of hard ellipsoids for which the static correlators have been obtained using Percus-Yevick theory. We also demonstrate that the critical non-ergodicity parameters obtained from molecular mode coupling theory for both systems show a remarkable similarity at the glass transition, provided the aspect ratio is chosen properly. Therefore we conclude that a system of hard ellipsoids can indeed be used to understand part of the essential behaviour of such a simple molecular system like the A-B Lennard-Jones molecules in the vicinity of the ideal glass transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.