Abstract

We theoretically and numerically study optical modes in regular-polygonal microcavities with non-uniform gain and loss, where high quality (Q) whispering-gallery-like modes typically appear as superscar states. High Q superscar modes can be described by the propagating plane waves in an effective rectangle formed by unfolding the periodic orbits and exhibit regular and predictable spatial field distributions and transverse-mode spectra. With non-uniform gain and loss, anti-Hermitian coupling between the transverse modes with close frequencies occurs according to the mode coupling theory, which results in novel mode properties such as modified mode spectra and field patterns, and the appearance of exceptional points. Numerical simulation results are in good agreement with the theoretical analyses, and such analyses are also suitable for other kinds of high Q microcavities with non-uniform gain and loss. These results will be highly useful for studying non-Hermitian physics in optical microcavities and advancing the practical applications of microcavity devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.