Abstract
BackgroundInducible defenses are a common and widespread form of phenotypic plasticity. A fundamental factor driving their evolution is an unpredictable and heterogeneous predation pressure. This heterogeneity is often used synonymously to quantitative changes in predation risk, depending on the abundance and impact of predators. However, differences in ‘modality’, that is, the qualitative aspect of natural selection caused by predators, can also cause heterogeneity. For instance, predators of the small planktonic crustacean Daphnia have been divided into two functional groups of predators: vertebrates and invertebrates. Predators of both groups are known to cause different defenses, yet predators of the same group are considered to cause similar responses. In our study we question that thought and address the issue of how multiple predators affect the expression and evolution of inducible defenses.ResultsWe exposed D. barbata to chemical cues released by Triops cancriformis and Notonecta glauca, respectively. We found for the first time that two invertebrate predators induce different shapes of the same morphological defensive traits in Daphnia, rather than showing gradual or opposing reaction norms. Additionally, we investigated the adaptive value of those defenses in direct predation trials, pairing each morphotype (non-induced, Triops-induced, Notonecta-induced) against the other two and exposed them to one of the two predators. Interestingly, against Triops, both induced morphotypes offered equal protection. To explain this paradox we introduce a ‘concept of modality’ in multipredator regimes. Our concept categorizes two-predator-prey systems into three major groups (functionally equivalent, functionally inverse and functionally diverse). Furthermore, the concept includes optimal responses and costs of maladaptions of prey phenotypes in environments where both predators co-occur or where they alternate.ConclusionWith D. barbata, we introduce a new multipredator-prey system with a wide array of morphological inducible defenses. Based on a ‘concept of modality’, we give possible explanations how evolution can favor specialized defenses over a general defense. Additionally, our concept not only helps to classify different multipredator-systems, but also stresses the significance of costs of phenotype-environment mismatching in addition to classic ‘costs of plasticity’. With that, we suggest that ‘modality’ matters as an important factor in understanding and explaining the evolution of inducible defenses.
Highlights
Inducible defenses are a common and widespread form of phenotypic plasticity
We investigated if differences in the modality of invertebrate predators are relevant for the expression of inducible defenses
We show that two invertebrate predators can induce different morphological defensive traits in D. barbata, which are based on the same structures, but built in different shapes
Summary
Inducible defenses are a common and widespread form of phenotypic plasticity. A fundamental factor driving their evolution is an unpredictable and heterogeneous predation pressure. Due to its variable nature, it is known to cause adaptations in the form of plastic responses in phenotypes, termed inducible defenses. Since they were first described [1] extensive research has revealed that this phenomenon is extremely widespread in many taxa, including bacteria [2], plants [3,4,5], invertebrates [6] and vertebrates [7,8]. To date heterogeneity has often been used synonymously with variation in predation intensity (that is, the quantity of prey consumed or density of predators), caused by the presence or absence of predators (for example, by seasonal patterns [10]) It is relevant how much prey is eaten. Many studies on amphibians [7,8,16,17], mollusks [11,18,19,20], insects [21], rotifers [22,23] and crustaceans [6,24] have demonstrated predator-specific responses, emphasizing the importance of modality
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.