Abstract
The influence of the turbulence outer scale on the Strehl ratio obtained with low-order adaptive optics systems is examined by numerical simulation. The Karhunen-Loeve approach is used to generate wave-front samples. A method that allows construction of the outer-scale-dependent Karhunen-Loeve functions is described. It is shown that the Strehl ratio produced by a second-order adaptive optics correction (tip-tilt, defocus, and astigmatism) is affected quite strongly by the finite outer scale. For the higher-order correction, the effect under study is weak and appears only when the outer-scale magnitude becomes less than the aperture diameter. It is also shown that the finite outer scale has a positive effect on the Strehl ratio of the uncorrected long-exposure image.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.