Abstract

BackgroundTo understand information coding in single neurons, it is necessary to analyze subthreshold synaptic events, action potentials (APs), and their interrelation in different behavioral states. However, detecting excitatory postsynaptic potentials (EPSPs) or currents (EPSCs) in behaving animals remains challenging, because of unfavorable signal-to-noise ratio, high frequency, fluctuating amplitude, and variable time course of synaptic events. New methodWe developed a method for synaptic event detection, termed MOD (Machine-learning Optimal-filtering Detection-procedure), which combines concepts of supervised machine learning and optimal Wiener filtering. Experts were asked to manually score short epochs of data. The algorithm was trained to obtain the optimal filter coefficients of a Wiener filter and the optimal detection threshold. Scored and unscored data were then processed with the optimal filter, and events were detected as peaks above threshold. ResultsWe challenged MOD with EPSP traces in vivo in mice during spatial navigation and EPSC traces in vitro in slices under conditions of enhanced transmitter release. The area under the curve (AUC) of the receiver operating characteristics (ROC) curve was, on average, 0.894 for in vivo and 0.969 for in vitro data sets, indicating high detection accuracy and efficiency. Comparison with existing methodsWhen benchmarked using a (1 − AUC)−1 metric, MOD outperformed previous methods (template-fit, deconvolution, and Bayesian methods) by an average factor of 3.13 for in vivo data sets, but showed comparable (template-fit, deconvolution) or higher (Bayesian) computational efficacy. ConclusionsMOD may become an important new tool for large-scale, real-time analysis of synaptic activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.