Abstract
Field-scale transport of natural organic matter (NOM) was studied in a two-well tracer test by injecting 80,000 L of [open quotes]brown water[close quotes] (66 mg of C L[sup [minus]1]) from a wetlands pond into a shallow, sandy, coastal plain aquifer. The basic features of NOM breakthrough observed in laboratory column studies (extending tailing and rapid decline in concentrations when NOM inputs are terminated) were observed in the field. Retardation of NOM in the field agreed with predictions from laboratory studies. In spite of natural heterogeneities, fractionation of NOM subcomponents occurred in transport. Smaller (< 3,000 MW) and more hydrophilic (by XAD-8 chromatography) components of NOM were more mobile than were larger (3--100K MW), more hydrophobic components. However, over the 2-week injection, the solid and solution phase reached an apparent steady state with respect to NOM adsorption, resulting in the unretarded transport of even the hydrophobic and macromolecular NOM. The results indicate that NOM can exhibit considerable mobility in an aquifer and suggest that NOM could alter the transport of contaminants in groundwater. 43 refs., 9 figs., 5 tabs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.