Abstract
In this work we discuss limitations of the split-CV method when it is used for extracting carrier mobilities in devices with thin silicon channels like FinFETs, ultra thin body silicon-on-insulator (UTB-SOI) transistors and nanowire MOSFETs. We show that the high series resistance may cause frequency dispersion during the split-CV measurements, which leads to underestimating the inversion charge density and hence overestimating mobility. We demonstrate this effect by comparing UTB-SOI transistors with both recessed-gate UTB-SOI devices and thicker conventional SOI MOSFETs. In addition, the intrinsic high series access resistance in UTB-SOI MOSFETs can potentially lead to an overestimation of the effective internal source/drain voltage, which in turn results in a severe underestimation of the carrier mobility. A specific MOSFET test structure that includes additional 4-point probe channel contacts is demonstrated to circumvent this problem. Finally, we accurately extract mobility in UTB-SOI transistors down to 0.9 nm silicon film thickness (four atomic layers) by utilizing the 4-point probe method and carefully choosing adequate frequencies for the split-CV measurements. It is found that in such thin silicon film thicknesses quantum mechanical effects shift the threshold voltage and degrade mobility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.