Abstract
Based on the mechanism of four-fold rigid origami, this study proposes a type of deployable truss structures that consist of repetitive basic parts and retain full cyclic symmetry in the folding/deployment process. On the basis of the irreducible representations and the great orthogonality theorem, symmetry-adapted analysis using group theory is described to identify the symmetry of mobility and kinematic behavior. Equivalent three-dimensional pin-jointed frameworks are employed for the symmetric structures. To verify that the structures can be foldable while retaining their full symmetries, numerical simulations on a series of structures with different symmetries and geometries are carried out. An artificial damping is introduced to stabilize the nonlinear folding behavior with singularity. Symmetry-adapted mobility analysis reveals that the structures of this type can be continuously folded with one degree-of-freedoms. Numerical simulations using the nonlinear iterative method accurately predict the folding behavior, as the results agree very well with the theoretic value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.