Abstract

We study a hybrid transportation system referred to as mobility allowance shuttle transit (MAST) where vehicles may deviate from a fixed path consisting of a few mandatory checkpoints to serve demand distributed within a proper service area. In this paper we propose a mixed integer programming (MIP) formulation for the static scheduling problem of a MAST type system. Since the problem is NP-Hard, we develop sets of logic cuts, by using reasonable assumptions on passengers’ behavior. The purpose of these constraints is to speed up the search for optimality by removing inefficient solutions from the original feasible region. Experiments show the effectiveness of the developed inequalities, achieving a reduction up to 90% of the CPU solving time for some of the instances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.