Abstract

Bearings are an important component in mechanical equipment, and their health detection and fault diagnosis are of great significance. In order to meet the speed and recognition accuracy requirements of bearing fault diagnosis, this paper uses the lightweight MobileNetV2 network combined with fast spectral kurtosis to diagnose bearing faults. On the basis of the original MobileNetV2 network, a progressive classifier is used to compress the feature information layer by layer with the network structure to achieve high-precision and rapid identification and classification. A cross-local connection structure is added to the network to increase the extracted feature information to improve accuracy. At the same time, the original fault signal of the bearing is a one-dimensional vibration signal, and the signal contains a large number of non-Gaussian noise and accidental shock defects. In order to extract fault features more efficiently, this paper uses the fast spectral kurtosis algorithm to process the signal, extract the center frequency of the original signal, and calculate the spectral kurtosis value. The kurtosis map generated by signal preprocessing is used as the input of the MobileNetV2 network for fault classification. In order to verify the effectiveness and generality of the proposed method, this paper uses the XJTU-SY bearing fault dataset and the CWRU bearing dataset to conduct experiments. Through data preprocessing methods, such as data expansion for different fault types in the original dataset, input data that meet the experimental requirements are generated and fault diagnosis experiments are carried out. At the same time, through the comparison with other typical classification networks, the paper proves that the proposed method has significant advantages in terms of accuracy, model size, training speed, etc., and, finally, proves the effectiveness and generality of the proposed network model in the field of fault diagnosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.