Abstract
The growing ubiquity of smart-phones equipped with built-in sensors and global positioning system (GPS) has resulted in the collection of large volumes of mobility data without the need of any additional devices. The large size of heterogeneous mobility data gives rise to rapid development of location-based services (LBSs). The predictability of mobile users’ behavior is essential to enhance LBSs. To predict human mobility, many techniques have been proposed. However, existing techniques require good data quality to guarantee optimal performance. In this paper, we proposed a hybrid Markov chain to predict mobile users’ future locations. Our model constantly adapts to available user trace quality to select either the first order or the second order Markov chain. Compared to existing solutions, our model is adaptive to discrete gaps in data trace. To help us understanding complex user behaviors, we have also proposed a technique benefiting both temporal and spatial parameters to extract Zone of Interests (ZOIs). To evaluate the algorithm’s performance, we use a real-life dataset from the Nokia Mobile Data Challenge (MDC) collected around Lake Geneva region from 180 users. We found a satisfactory future user location prediction accuracy of 70 – 84%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.