Abstract

We used black carbon data from a mobile monitoring campaign in Oakland, USA measuring street segments up to 40 times and compared a data-only, LUR model and mixed-model approach with a long-term average, represented by the average concentration based on 40 drive days on that street segment. The mixed model outperformed the data-only and LUR model estimates, with 80% explained variance after 5 drive days and 90% after 14 drive days. The data-only approach needed 8 and 15 to achieve an explained variance of 80% and 90%, respectively, The LUR model never achieved an explained variance higher than 70%. The mixed model is a scalable approach, as it can be used before all street segments in a domain are measured by developing a LUR model and adds information with increasing repeats per street segment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.